skip to main content


Search for: All records

Creators/Authors contains: "Li, Wenwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper assesses trending AI foundation models, especially emerging computer vision foundation models and their performance in natural landscape feature segmentation. While the term foundation model has quickly garnered interest from the geospatial domain, its definition remains vague. Hence, this paper will first introduce AI foundation models and their defining characteristics. Built upon the tremendous success achieved by Large Language Models (LLMs) as the foundation models for language tasks, this paper discusses the challenges of building foundation models for geospatial artificial intelligence (GeoAI) vision tasks. To evaluate the performance of large AI vision models, especially Meta’s Segment Anything Model (SAM), we implemented different instance segmentation pipelines that minimize the changes to SAM to leverage its power as a foundation model. A series of prompt strategies were developed to test SAM’s performance regarding its theoretical upper bound of predictive accuracy, zero-shot performance, and domain adaptability through fine-tuning. The analysis used two permafrost feature datasets, ice-wedge polygons and retrogressive thaw slumps because (1) these landform features are more challenging to segment than man-made features due to their complicated formation mechanisms, diverse forms, and vague boundaries; (2) their presence and changes are important indicators for Arctic warming and climate change. The results show that although promising, SAM still has room for improvement to support AI-augmented terrain mapping. The spatial and domain generalizability of this finding is further validated using a more general dataset EuroCrops for agricultural field mapping. Finally, we discuss future research directions that strengthen SAM’s applicability in challenging geospatial domains.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Free, publicly-accessible full text available May 4, 2024
  3. GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions. 
    more » « less
  4. Bin Li, Xun Shi (Ed.)
  5. Abstract

    Knowledge graphs are a key technique for linking and integrating cross‐domain data, concepts, tools, and knowledge to enable data‐driven analytics. As much of the world's data have become massive in size, visualizing graph entities and their interrelationships intuitively and interactively has become a crucial task for ingesting and better utilizing graph content to support semantic reasoning, discovering hidden knowledge discovering, and better scientific understanding of geophysical and social phenomena. Despite the fact that many such phenomena (e.g., disasters) have clear spatial footprints and geographic properties, their location information is considered only as a textual label in existing graph visualization tools, limiting their capability to reveal the geospatial distribution patterns of the graph nodes. In addition, most graph visualization techniques rely on 2D graph visualization, which constrains the dimensions of information that can be presented and lacks support for graph structure examination from multiple angles. To tackle the above challenges, we developed a novel 3D map‐based graph visualization algorithm to enable interactive exploration of graph content and patterns in a spatially explicit manner. The algorithm extends a 3D force directed graph by integrating a web map, an additional geolocational force, and a force balancing variable that allows for the dynamic adjustment of the 3D graph structure and layout. This mechanism helps create a balanced graph view between the semantic forces among the graph nodes and the attractive force from a geolocation to a graph node. Our solution offers a new perspective in visualizing and understanding spatial entities and events in a knowledge graph.

     
    more » « less